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1. Introduction

Unification of gauge and gravitational interactions is one of the most important paradigm

in particle physics and it has guided theoretical physics when the experiments did not

follow theory. Three gauge couplings are believed to be unified at very high energy so

called grand unification scale (GUT scale). In the standard model it works within 10 to 20

percent errors and in the minimal supersymmetric extensions of it, the unification works a

lot better (within a few percent errors). Thus it seems to provide a strong hint for what

is new physics at TeV scale or higher. In order to unify gauge interactions with gravity,

first we should understand why the electroweak scale is so lower compared to the Planck

scale at which gravitational interactions become of order one similar strength to the gauge

interactions. Supersymmetry broken at TeV is regarded as the most popular solution to

this problem.

However, we can address the question in a different way. Why is gravity so weak?

Effective gravitational interaction at given energy scale is E2/M2
P lanck and is extremely

tiny compared to order one gauge interactions. This question brought entirely new solu-

tions to the problem of disparity between gravity and gauge interactions in terms of extra

dimensions. Large extra dimension [1, 2] explains the weakness of gravity in terms of large

volume of extra dimenions only gravity feels. Warped extra dimension (a slice of AdS5)
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proposed by Randall and Sundrum [3] naturally provides TeV brane at which the natural

scale is just TeV due to an exponential warp factor along the extra dimension. Graviton

zero mode wave function is not flat in AdS5 but is localized at Planck brane. Thus TeV

brane matter feels only the tail of graviton zero mode and weakness of gravity is naturally

explained even with a small (order one) size of the extra dimension.

Flat extra dimension with size smaller than 0.1mm is consistent with the current

experimental limit [4] as long as gauge interactions are confined on the brane and only

gravity feels it. Submillimeter extra dimensions make gravity be strong at TeV if there are

two extra dimensions which is just the limit from precision gravity experiment. Although

it provides the most interesting possibility, there comes a strong constraint from astro-

physics/cosmology. From the supernovae and neutron stars we would expect more gamma

rays from decays of massive Kaluza-Klein gravitons whose mass is below the temperature

of the supernovae core, 30 MeV. This puts the most stringent bound on large extra di-

mensions [5]. Single extra dimension gives too light massive graviton which is already

inconsistent with the experimental fact if we force the scale of quantum gravity at around

TeV. For two extra dimensions, the bound pushes the scale of quantum gravity beyond

1000 TeV and we can not relate it to the weak scale any longer. In this paper we suggest

a setup in which the lightest Kaluza-Klein graviton is heavy enough and can be consistent

with the experimental bounds. In this setup the N-fold degeneracy with sufficiently large N

provides a rapid change of the gravitational interactions such that gravity can be of order

one at TeV.

String theory is usually defined in 10/11 dimensions and 6/7 extra dimensions should

be curled up and be hidden to be consistent with the fact that we live in 3+1 noncompact

spacetime. The most popular scenario assumes Calabi-Yau space as the compactification

manifold to yield 4D N=1 supersymmetry [6]. Recently compactification with various flux

has been intensively studied as it provides the stabilization of most string theory moduli

which otherwise would remain massless [7 – 11]. Flux compactification also generates throat

geometry in Calabi-Yau and the long throat physics is well described in terms of effective 5

dimensional theory. Full 10 dimensional physics appears only at very high energy scale near

the string scale and the low energy excitations are just the Kaluza-Klein states of Randall-

Sundrum like setup. It is then natural to imagine that there would be many throats in

Calabi-Yau space and we can ask what the theory looks like if Calabi-Yau has multi-

throat geometry. In this case we have a clear distinction between scales of Kaluza-Klein

excitations and light modes appear only at around infrared(IR) branes. There are many

physical questions that can be addressed without knowing full 10 dimensional spectrum.

Therefore it would be interesting to see what the spectrum will look like for the multi-

throat geometry. The essential property of multi-throat geometry is kept when we replace

each throat by RS geometry which just include single extra coordinate [12 – 14]. 1 Then

the bulk region corresponds to the ultraviolet (UV) brane. As all the throats are connected

to the bulk, several IR branes are linked to the UV brane through the slice of AdS5. This

setup is exactly the one we will study here.

1Recent studies are in [15, 16].
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Once we have a situation where the extra coordinate is just one but has a several branch

starting from the UV brane, we can generalize it to the flat space. The junction of extra

space is nothing to do with the curvature of each AdS5 and we can attach several different

AdS5 slice with different curvatures at the same time. Therefore, it is natural to imagine

the flat limit of the same configuration. At least we can define a consistent field theory on

the flat limit of the multi-throat effective theory and can study the theory on it. How to

get such a geometry from Calabi-Yau or other compactification is an independent question

and we will not address it here. One obvious example is the torus with a genus one. When

one cycle wrapping the genus is much larger than the other cycle, we can approximate

the geometry as one dimensional ring at low energy scale. The excitation associated to

the other cycle will appear only at very high energy scale and will be irrelevant to the

physics below the inverse scale of the other cycle. We can find an effective 5 dimensional

description of multi-geni Calabi-Yau in a similar way.

In this paper we will analyze the spectrum of the fields living in a single extra dimension

discussed above. After a brief discussion on how to get such an extra dimension, we use

deconstruction with a few sites for the analysis. We also study the phenomenology with

spectrum obtained by deconstruction technique. Then we discuss the actual analysis in

field theory. Finally we conclude with a few remarks.

2. Brane intersection of its own

As long as gauge interactions are concerned, the best way to obtain the flat space limit

of multi-throat geometry is the brane intersection of its own. We consider a setup in

which a brane bends and finally intersects by itself. The simplest possibility is to have

figure eight(8). We can continue the process so that many rings intersect at a single point.

Perhaps the simplest one is to fold the ring in such a way there would be an interval. The

final setup would be the gathering of many intervals with one common point. Suppose

that the individual interval has a finite length ρ and there are N such intervals. The total

length is then Nρ. Any gauge theory living on this configuration would have a suppression

1/(Nρ) in its 4D gauge coupling. Now the question is the scale of Kaluza-Klein excitations.

Thus we consider these configurations. To see the new feature clearly, we take the

deconstruction [17, 18] as our analysis tool.

2.1 Deconstruction

If we do the analysis for the circle moose diagram, we would obtain the eigenvalues

M2
n =

(

2

a

)2

sin2
( na

2R

)

,
−N

2
< n ≤ N

2

where a = 1
g〈Φ〉 and R = Na. For N À 1 and n ¿ N , the expression is well approximated

to be

M2
n =

( n

R

)2
.
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2.1.1 N-octopus

First of all, suppose there is a center point at which several intervals are connected. We

call it ’octopus’ diagram although the legs need not be eight. Let the legs be N. Each leg

has one end adjacent to the head of the octopus (the center). The boundary condition

would determine the eigen modes along the extra dimension but it would be easier to see

it from a simplified deconstruction setup.

Let us consider a gauge theory on it. There is a gauge boson A0
µ which is at the head

and each leg connects A0
µ to Ai

µ where i = 1, · · · , N . If the scalar fields linking two sites get

VEVs, the corresponding gauge bosons become massive. The link field Φi is bi-fundamental

under the gauge group G0 and Gi. The mass matrix for N + 1 gauge bosons is

M2 =
1

a2



















1 0 0 · · · 0 −1

0 1 0 · · · 0 −1

0 0 1 · · · 0 −1

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1

−1 −1 −1 · · · −1 N



















(2.1)

where a = 1
g〈Φ〉 and the N + 1th column and row correspond to A0

µ. There are N + 1

eigenstates. The characteristic equation can be easily derived for M̂2 = a2M2.

det(M̂2 − λI) = λ(1 − λ)N−1{λ − (N + 1)} (2.2)

There is a zero mode λ = 0 with the eigenvector v0 = 1√
N+1

(1, 1, 1, · · · , 1). The light-

est Kaluza-Klein states are degenerate. There are N − 1 states with mass ( 1
a)2. The

eigenvectors should be orthogonal to the zero mode and its N + 1th component is zero.

Thus v1 = 1√
2
(1,−1, 0, · · · , 0, 0, 0, · · · , 0), v2 = 1√

6
(1, 1,−2, · · · , 0, 0, 0, · · · , 0) and vi =

1√
i(i+1)

(1, 1, 1, · · · , 1,−i, 0, · · · , 0) where i = 1, · · · , N − 1. (The final one with i = N is

– 4 –



J
H
E
P
0
1
(
2
0
0
6
)
0
9
0

not linearly independent if there are vectors from i = 1 to i = N − 1.) The last one has

the eigenvalue (N+1)
a2 and the eigenvector is vN = 1√

N(N+1)
(1, 1, · · · ,−N).

The deconstruction of the octopus with N legs can be easily generalized to include

higher excitations of each leg by adding more sites between the site 0 and i. The octopus

has two distance scales. One is the size of each leg ρ which is just the lattice size in the

above example ρ = a. The other is the total volume of the extra dimension which is simply

N times ρ. (R = Nρ). You might guess that the lowest excitation will appear at a scale 1/R

but it turns out that it appears only at 1/ρ = N/R. It is an interesting example in which

the volume suppression can be large and at the same time the Kaluza-Klein excitations

associated with it can be very heavy.2

2.1.2 Two centers

Let us consider the second example with two centers.

It is straightforward to generalize the setup.

M2 =
1

a2



















1 0 −1 0 0 0

0 1 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 1 0

0 0 0 −1 0 1



















(2.3)

We can list the eigenvalues and the eigenstates for M̂2 = a2M2 up to normalization.

λ = 0 (1, 1, 1, 1, 1, 1)

λ =
5 −

√
17

2

(

1, 1,

√
17 − 3

2
,−

(√
17 − 3

2

)

,−1,−1

)

λ = 1 (1,−1, 0, 0, 0, 0)

2With two or more extra dimensions, distinct KK modes appear if we consider compact hyperbolic extra

dimensions [19].
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λ = 1 (0, 0, 0, 0, 1,−1)

λ = 3 (1, 1,−2,−2, 1, 1)

λ =
5 +

√
17

2

(

1, 1,−
(

3 +
√

17

2

)

,
3 +

√
17

2
,−1,−1

)

2.1.3 Two centers with 2N legs

M2 =
1

a2







































1 0 · · · 0 −1 0 0 · · · 0 0

0 1 · · · 0 −1 0 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 1 −1 0 0 · · · 0 0

−1 −1 · · · −1 N + 1 −1 0 · · · 0 0

0 0 · · · 0 −1 N + 1 −1 · · · −1 −1

0 0 · · · 0 0 −1 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 −1 0 · · · 1 0

0 0 · · · 0 0 −1 0 · · · 0 1







































(2.4)

We can list the eigenvalues and the eigenstates for M̂2 = a2M2 up to normalization.

For large N ( N À 1), the expression can be approximated as follows.

λ = 0 (1, 1, · · · , 1, 1, 1, 1, · · · , 1, 1)

λ =
2

N

(

1, 1, · · · , 1, 1 − 2

N
,−1 +

2

N
,−1, · · · ,−1,−1

)

λ = 1 (1,−1, · · · , 0, 0, 0, 0, · · · , 0, 0)
· · ·

(1, 1, · · · ,−N + 1, 0, 0, 0, · · · , 0, 0)
(N − 1)

λ = 1 (0, 0, · · · , 0, 0, 0, 1,−1, · · · , 0)
· · ·
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(0, 0, · · · , 0, 0, 0, 1, 1, · · · ,−(N − 1))

(N − 1)

λ = N + 1 (1, 1, · · · , 1,−N,−N, 1, · · · , 1, 1)

λ = N + 3 − 2

N

(

1, 1, · · · , 1,−N − 2 +
2

N
,N + 2 − 2

N
,−1, · · · ,−1,−1

)

The presence of light modes λ = 2
N is the most striking aspect of two centers model.

When there is a unique center, the lightest excitation started from 1. Now it starts from
2
N which is very light for N À 1. Interpretation of the result is simple. If we disconnect

the middle line connecting two centers, we end up with two ’N-Octopus’ and each one has

a zero mode. If we connect two centers with a new line, it becomes a coupled system which

mimics two ground state problem in quantum mechanics. If there is a small mixing, the

true ground state is an even combination of two ground states and there is an excited state

which is an odd combination of the two ground states. If the mixing vanishes, there are

twofold degenerate ground state. Here the middle line plays a role of the mixing between

two states and we get one zero mode (even combination of each N-octopus zero mode) and

one light mode (odd combination of each one). 3

2.2 3 legs with multiple sites

M2 =
1

a2

























1 −1 0 0 0 0 0

−1 2 0 0 0 0 −1

0 0 1 −1 0 0 0

0 0 −1 2 0 0 −1

0 0 0 0 1 −1 0

0 0 0 0 −1 2 −1

0 −1 0 −1 0 −1 3

























(2.5)

3The author thanks R. Rattazzi for this simple interpretation.
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We can list the eigenvalues and the eigenstates for M̂2 = a2M2 up to normalization.

λ = 0 (1, 1, 1, 1, 1, 1, 1)

λ =
3 −

√
5

2

(

1,

√
5 − 1

2
,−1,

−
√

5 + 1

2
, 0, 0, 0

)

(

1,

√
5 − 1

2
, 1,

√
5 − 1

2
,−2,−

√
5 + 1, 0

)

λ =
3 +

√
5

2

(

1,
−
√

5 − 1

2
,−1,

√
5 + 1

2
, 0, 0, 0

)

(

1,
−
√

5 − 1

2
, 1,

−
√

5 − 1

2
,−2,

√
5 + 1, 0

)

λ = 3 −
√

2
(

1,−2 +
√

2, 1,−2 +
√

2, 1,−2 +
√

2, 3 − 3
√

2
)

λ = 3 +
√

2 (1,−2 −
√

2, 1,−2 −
√

2, 1,−2 −
√

2, 3 + 3
√

2)

The result shows that the addition of nodes provides more modes which are heavier

than the energy scale corresponding to the inverse of each leg. One clear thing is that there

is no mode whose scale is about 1/(6a)2.

2.3 3 legs with multiple sites (different lengths)

M2 =
1

a2



















1 0 0 0 0 −1

0 1 −1 0 0 0

0 −1 2 0 0 −1

0 0 0 1 −1 0

0 0 0 −1 2 −1

−1 0 −1 0 −1 3


















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We can list the eigenvalues and the eigenstates for M̂2 = a2M2 up to normalization.

λ = 0 (1, 1, 1, 1, 1, 1)

λ =
3 −

√
5

2

(

0, 1,

√
5 − 1

2
,−1,

−
√

5 + 1

2
, 0

)

λ =
5 −

√
13

2

(

1,−1

2
,
3 −

√
13

4
,−1

2
,
3 −

√
13

4
,

√
13 − 3

4

)

λ = 2 (1, 1,−1, 1,−1,−1)

λ =
3 +

√
5

2

(

0, 1,
−
√

5 − 1

2
,−1,

√
5 + 1

2
, 0

)

λ =
5 +

√
13

2

(

1,−1

2
,
3 +

√
13

4
,−1

2
,
3 +

√
13

4
,
−3 −

√
13

2

)

2.4 Large extra dimensions

Although we can not apply the deconstructed result directly to gravity, the field theory

analysis would give the same result. Now the Kaluza-Klein states appear at very high

scales.

Deviation of Newtonian potential can be understood in terms of 4 dimensional effective

theory. With massless graviton only, the potential between two test particles with mass

m1 and m2 separated by distance r is

V

GNm1m2
=

1

r
. (2.6)

If we consider 5 dimensional theory compactified on a circle with radius R, we have extra

massive states with Mn = n
R for n = 1, 2, · · ·. They also mediate gravitational interactions

by Yukawa potentials

δV

GNm1m2
=

∞
∑

n=1

e−Mnr

r

=
e−

r
R

r(1 − e−
r
R )

. (2.7)

If r À R, δV
V ¿ 1 and we just have 4 dimensional gravity. However, if r ¿ R, δV

V À 1 and
δV

GN m1m2
' R

r2 and

V ' G
(5)
N

m1m2
r2 , (2.8)

which produce 5 dimensional gravitational potential (G
(5)
N = RGN , 5 dimensional Newton’s

constant).

We can do the same thing for higher dimensions but now the exact summation formula

is not available. When r ¿ R, we can approximate the summation with integrals

δV

GNm1m2
=

∞
∑

n1,n2,···,nD−4=1

e−Mnr

r

– 9 –
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=

∫ ∞

n=1
dnCD−4n

D−5 e−
nr
R

r

= C ′
D−4

RD−4

rD−3

where Mn = n/R with n =
√

n2
1 + n2

2 + · · · n2
D−4 for the isotropic compactification (R1 =

R2 = · · · = RD4 = R). CD−4 is the solid angle of D − 4 dimension.

Now let us consider the ’N-Octopus’ configuration. If we consider the setup in which N

equal length intervals with size πρ attached at a single point (total length = πR = πNρ),

the Kaluza-Klein spectrum comes as N degenerate states at Mn = n/ρ. In this case

Newtonian potential is modified by

δV

GNm1m2
=

∞
∑

n=1

N
e−Mnr

r

= N
e−

r
ρ

r(1 − e
− r

ρ )
, (2.9)

and when r ¿ ρ, we have

δV

GNm1m2
=

Nρ

r2
=

R

r2
. (2.10)

Therefore, we can conclude that it just reproduces 5 dimensional gravity when r ¿
ρ ¿ R = Nρ. Note the relation between R and ρ. If N À 1, there is a huge difference

between the scales at which the gravity is modified and the scale that enters in the modified

potential. The correction from massive gravitons become of order one if δV
V ∼ O(1) and

it is when the critical radius rc ' ρ log N which is not so much different from ρ. The

scale entering in 5D potential is R = Nρ which is much larger distance scale than ρ or

ρ log N . In this way we can simple imagine 5D flat extra dimensional model in which the

fundamental scale is around TeV while avoiding the phenomenological constrants from the

experiments.

We can choose N large enough to make a single extra dimension scenario be consistent

with the current experimental bound. For rc ' 0.1mm (1/rc ' 10−3 eV), if 1/ρ = 10−1 or

10−2 eV and N = 1016 or 1017, we can explain the weak scale quantum gravity with only

single extra dimension.

On the other hand, the most stringent bound on the extra dimension comes from

supernovae and neutron stars. This bound is not applicable if KK mass is heavier than

100 MeV. Thus for 1/ρ = 100 MeV and N = 1025, we start to see the fifth dimension when

1/rc ∼ 1 MeV and the gravity becomes strong at TeV. Octopus configuration with large

N can avoid bounds on large extra dimensions coming from light KK modes while having

TeV scale quantum gravity. The geometry considered here postpone the appearance of KK

modes till very short distance (high energy) and all the modes appear at the same time at

very high energies.

– 10 –
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2.5 4 Fermi interactions

Unlike the usual case in which the first KK state appears at MKK = 1/R and we get

1/M2
KK after integrating out KK states, here the KK states are extremely heavy, MKK =

1/ρ = N/R. As there appear N such KK states, after integrating out KK states, we

get 1/M2
KK = 1/(NR2) which is suppressed by N . There would be many interesting

phenomenology associated with it.

2.6 Warped extra dimension

It would be interesting to see what happens in the warped extra dimensions. We can

analyze the spectrum of multi-throat configuration in a similar way, but the result is not as

interesting as in flat space. There is a single zero mode whose wave function is all over the

extra dimension. Then the excited states appear with wave functions localized near the

throats (especially when the curvature is large which is distintively different from flat extra

dimensions). It is clearly seen in deconstruction setup [20, 21]. Gauge theory in a warped

background has a nontrivial warp factor in front of ηµνFµ5Fν5 and it can be deconstructed

with a position dependent link VEV 〈Φi〉 = 〈Φ0〉εi where ε corresponds to e−k/Λ with k

the AdS5 curvature and Λ the cutoff of the theory with ε ¿ 1 for highly curved AdS5 [20].

The mass matrix for N sites is

M2 =
ε2

a2



















1 −1 0 0 0 · · · 0

−1 1 + ε2 −ε2 0 0 · · · 0

0 −ε2 ε2 + ε4 −ε4 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 −ε2(N−3) ε2(N−3) + ε2(N−2) −ε2(N−2)

0 · · · 0 0 0 −ε2(N−2) ε2(N−2)



















(2.11)

The zero mode eigenstate is

A(0)
µ =

1√
N

N
∑

i=1

Aµ,i. (2.12)

For the excited states, the analysis is extremely simplified when AdS is highly curved,

ε ¿ 1. The higher mode eigenstates are

A(N−1)
µ =

1√
2
(Aµ,1 − Aµ,2),

A(N−2)
µ =

1√
6
(Aµ,1 + Aµ,2 − 2Aµ,3),

· · ·
A(1)

µ =
1

√

(N − 1)N
(Aµ,1 + · · · + Aµ,N−1 − (N − 1)Aµ,N ),

where the coefficients are determined up to O(ε2). A
(N−j)
µ has the eigenvalue of order

O(〈Φ0〉εj) for j = 1, · · · , N − 1 and the 5D interpretation is clear. For higher modes

(mn ∼ 〈Φ0〉), the wave function is localized near the UV brane. The lightest mode is

mostly localized near the IR brane.
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The same analysis can be done for the multi-throat configuration which has several IR

branes and one UV brane with an Octopus shape. For simplicity, let us consider two IR

branes connected to the UV brane. The mass matrix is then

M2 =
ε2

a2

























ε2(N−2) · · · 0 0 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 · · · 1 + ε2 −1 0 · · · 0

0 · · · −1 2 −1 · · · 0

0 · · · 0 −1 1 + ε2 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 0 · · · ε2(N−2)

























(2.13)

We can get the eigenstates from the simple UV-IR case. We have 2N-1 sites and there

are 2N-1 eigenstates. The zero mode is flat along the extra dimension which is the same

as before. The remaining 2N-2 modes are obtained simply by considering even and odd

combinations of two N-1 modes. For instance, the lightest modes except the zero mode are

A(1+)
µ =

1
√

2(N2 − N + 3)
(−(N − 1)Aµ,1 + · · · + Aµ,N−1 + 2Aµ,N

+Aµ,N+1 + · · · − (N − 1)Aµ,2N−1), (2.14)

A(1−)
µ =

1
√

2(N2 − N − 1)
(−(N − 1)Aµ,1 + · · · + Aµ,N−1

−Aµ,N+1 + · · · + (N − 1)Aµ,2N−1), (2.15)

up to O(ε2), and the corresponding eigenvalues are degenerate (twofold degeneracy)

mn = g〈Φ0〉ε(N−1)

up to O(ε2). More precisely the degeneracy is lifted by 1/N correction. All the higher modes

are similarly obtained and only for the heaviest one, the eigenvalues are mn = g〈Φ0〉ε and

mn =
√

3g〈Φ0〉ε up to O(ε2).

Therefore, the presence of the extra throat does not affect the spectrum of lighter KK

states. Only when the KK mass is larger or comparable to the curvature scale, the wave

function connects different throats and we get similar results as in flat extra dimensions.

This can be easily understood from AdS/CFT correspondence [22 – 24]. Each throat cor-

responds to a strongly coupled CFT and each CFT has many resonances (KK modes).

The resonances in one CFT is nothing to do with the ones in the other CFT. Thus KK

spectrum in AdS which corresponds to the resonances of CFT should not be affected by

the presence of other throats.

3. Field theory analysis

It is fairly simple to do the field theory analysis. As the analysis is independent of Lorentz

index, let us consider a massless scalar field φ in 5 dimensions. The same result will be

obtained for massless vector fields, massless gravitons and massless fermions.

– 12 –



J
H
E
P
0
1
(
2
0
0
6
)
0
9
0

3.1 Octopus with N legs

First of all, we consider a joint of N intervals at a single point. The figure shows a

schematic configuration and dots represent omitted N-5 intervals. The figure just shows

the extra dimension and the relative angle between two intervals or the ordering of different

intervals do not have any physical meaning in the configuration as there is no space at all

beyond the extra dimension denoted by lines in the figure. The lagrangian for a massless

scalar field is

L =

∫

d4x

(∫ 2πρ

0
dx

(1)
5 +

∫ 2πρ

0
dx

(2)
5 + · · · +

∫ 2πρ

0
dx

(N)
5

)[

1

2
∂Mφ(x, x5)∂

Mφ(x, x5)

]

,

(3.1)

where M = 0, 1, 2, 3, 5 is 5 dimensional Lorentz index. For the octopus of N legs with

Neumann boundary conditions at N ends of the legs (for simplicity, we assume all the legs

are equal in length, πρ ),

∂

∂x
(i)
5

φ(i)(xµ, x
(i)
5 = 0) = 0, (3.2)

at x
(i)
5 = 0 with i = 1, · · · , N . We restrict our analysis to the case when there is no localized

term at the junction. The remaining boundary conditions are i) the wave function should

be continuous (as we do not have any extra terms located at special points) and ii) the

derivatives should cancel. The first and the second conditions are

φ(i)(xµ, x
(i)
5 = πρ) = φ(j)(xµ, x

(j)
5 = πρ), (3.3)

N
∑

i=1

∂

∂x
(i)
5

φ(i)(xµ, x
(i)
5 = πρ) = 0. (3.4)

Here we introduce coordinates x
(i)
5 (i = 1, · · · , N) which runs from 0 (the end of the ith

leg) to πρ (the center/junction). We are ready to find the spectrum. Let

φ(i)(xµ, x
(i)
5 ) =

∑

n

A(i)φ(i)
n cos(knx

(i)
5 ). (3.5)
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The boundary condition at the ends of the legs are satisfied. The remaining boundary

conditions are N − 1 conditions for the wave functions at the junction and one condition

for the cancellation of derivatives at the junction.

As the junction is located at x
(i)
5 = πρ for all i (equal distance away from the ends),

the boundary condition is

A(i) cos(k(i)
n πρ) = A(j) cos(k(j)

n πρ). (3.6)

which can be satisfied either for i) k
(i)
n πρ = (n(i) + 1

2)π or ii) A(i) = A(j) for all i 6= j. For

i), the final boundary condition is

∑

i

A(i)(−1)n
(i)+1 = 0. (3.7)

For ii), the condition is

(

∑

i

A(i)

)

sin(k(i)
n πρ) = NA(1) sin(k(i)

n πρ), (3.8)

and it can be satisfied only when k
(i)
n πρ = n(i)π since A(1) 6= 0.

Now all the eigenvalues are determined. Let us consider how many degenerate states

are there for each kn. For i), we have N − 1 independent solutions which can be written

in terms of a N dimensional vector v

v = (A(1), A(2), · · · , A(N)). (3.9)

as

v =
1√
2

√

2

πρ
(1,−1, 0, · · · , 0)

1√
6

√

2

πρ
(1, 1,−2, · · · , 0)

· · ·
1

√

(N − 1)N

√

2

πρ
(1, 1, 1, · · · ,−(N − 1))

For ii), all the coefficients are determined and there is a single state.

v =
1√
N

√

2

2δn,0πρ
(1, 1, 1, · · · , 1)

We should be careful here. For ii), we can imagine a wave function which is connected

with different n(i)s at differnt x
(i)
5 . As we know that there is a zero mode with a flat

potential, we can check whether the arbitrary n(i) can yield the orthogonality condition.

For n(i) 6= n(j), the wave functions are orthogonal at the ith leg. The lightest mode

(except the zero mode) should not include n(i) = 0 as they will generate a nonzero positive

contribution when we consider orthogonality condition with the zero mode. n(i) ≥ 1 is

– 14 –
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required from the consideration and the lightest mode is n(i) = 1 for all i. Similar reasoning

gives n(i) = 2 and higher and we can simply replace n(i) = n.

Now the spectrum is alternating. We have a single mode at Mn = n/ρ and N − 1

modes in between nth and n + 1th mode (Mn = (n + 1
2)/ρ)).

Asymmetry between the degeneracy of n/ρ and (n+ 1
2 )/ρ modes can be understood as

follows. We put Neumann boundary conditions at the ends of the legs and thus the states

with Dirichlet boundary conditions are projected out.

If we impose Dirichlet boundary condition at the ends of the legs, we would encounter

the opposite case. There is no zero mode and a single mode at Mn = (n + 1
2 )/ρ and N − 1

modes at Mn = (n + 1)/ρ with n ≥ 0.

3.2 Flower with N leaves

To see the picture clearly, let us consider a flower configuration where N rings are

attached at the same point (center). Each ring has a circumference 2πρ. We can do the

similar analysis. Now x
(i)
5 is from 0 to 2πρ and

φ(i)(xµ, x
(i)
5 ) =

∑

n

(A(i)φ(i)
n cos(knx

(i)
5 ) + B(i)φ(i)

n sin(knx
(i)
5 )). (3.10)

For each ring(leaf), the boundary condition corresponding to the end points of Octopus

is

φ(i)(x
(i)
5 + 2πρ) = φ(i)(x

(i)
5 ), (3.11)

and it determines k
(i)
n 2πρ = 2πn(i) and k

(i)
n = n(i)/ρ. The remaining boundary condition

at the center is the same. If we assign the center to be x
(i)
5 = πρ, the first N − 1 boundary

condition requires

A(i)(−1)n
(i)+1 = A(j)(−1)n

(j)+1. (3.12)

The special limit is when all A(i) = 0. The second boundary condition is automatically

satisfied. For each φ(i), there are incoming and outgoing derivatives which cancel with
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each other. Therefore, for each n(i), we can have N +1 independent solutions except when

n(i) = 0. For n(i) = 0 for all is, we have the usual zero mode.

v =
1√
N

1√
2πρ

(1, 1, 1, · · · , 1)

w = (0, 0, 0, · · · , 0)

Note that you do not need to have the same k
(i)
n for different is. The lightest mode

appears when all k
(i)
n = 1. There are N +1 such states which are degenerate with kn = 1/ρ.

One is

v =
1√
N

1√
πρ

(1, 1, 1, · · · , 1)

w = (0, 0, 0, · · · , 0)

and the other N states are

v = (0, 0, 0, · · · , 0)

w =
1√
πρ

(1, 0, 0, · · · , 0)

1√
πρ

(0, 1, 0, · · · , 0)

· · · (3.13)

1√
πρ

(0, 0, 0, · · · , 1)

For the latter case, it can be thought that the modes will be lighter than n/ρ as there

is only one ring that gives Kaluza-Klein mass. However, there is no wave function outside

of the ring and the result is the same as the case with a single ring with a radius ρ. You

can see that there are N + 1 states at each n/ρ except n = 0 (a single zero mode).

3.3 Caterpillar

Finally let us consider a ring that is attached with each other but the ring intersects

only with two nearest neighbor rings (except the edge ring which intersects with only one

ring). It would be a sequence of shape 8 and let us call it ’caterpillar’. From the boundary

conditions

φ(i)(x
(i)
5 + 2πρ) = φ(i)(x

(i)
5 ), (3.14)
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we can determine k
(i)
n = n(i)/ρ. When A(1) 6= 0, the wave function is continuous if

A(i)(−1)n
(i)

= A(i+1). (3.15)

There is no condition for B(i) as the derivatives cancel within the same ring. The

situation is the same as in the flower configuration. The first one for n = 0 is

v =
1√
N

1√
2πρ

(1, 1, 1, · · · , 1)

w = (0, 0, 0, · · · , 0)

and for n(i) 6= 0,

v =
1√
N

1√
πρ

(1, (−1)n
(i)

, 1, · · · , (−1)(n
(i)N))

w = (0, 0, 0, · · · , 0)

and the other N states are

v = (0, 0, 0, · · · , 0)

w =
1√
πρ

(1, 0, 0, · · · , 0)

1√
πρ

(0, 1, 0, · · · , 0)

· · · (3.16)

1√
πρ

(0, 0, 0, · · · , 1)

There are totally N + 1 degenerate states for each kn = n/ρ.

However, there appears much lighter states in this case. Suppose N = 2k+1. Then we

can imagine a configuration in which k
(i)
n = 0 for all is except i = k + 1 and k

(k+1)
n = 1/ρ.

The wave function is

v =
1√
N

1
√

2
δ
n(i) ,0πρ

(1, 1, 1, · · · , 1,−1, · · · ,−1,−1,−1)

w = (0, 0, 0, · · · , 0)

Now as there is an 1√
N

volume suppression in the wave function and the mode is still

orthogonal to the zero mode. The contributions of the first k rings cancel the ones of the

last k rings and k + 1 ring wave function is orthogonal since n(k) = 0 for the zero mode

and n(k) = 1 for the mode considered here. The Kaluza-Klein mass only comes from a

single ring and we get k4D = 1/(
√

Nρ) rather than 1/ρ. Here the configuration is uniquely

determined since the change of the wave function (n(i) 6= 0) should be located in the middle

to balance the wave function such that it can be orthogonal to the zero mode.

If we consider n(i) = 1 for two is, we can not make the wave function to be orthogonal

to the zero mode if N = 2k+1. Instead, we can consider N = 2k. As there are 2k−2 rings

with n(i) = 0, they should be evenly divided into positive and negative amplitudes. It is
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possible when the first nonzero n(i) and the second nonzero n(i) has a separation of k − 1.

There are k such possibilities. Although it would be interesting to study the spectrum of

these cases in detail, we will not pursue it here.

You can see the huge difference between the flower and the caterpillar configurations.

There is no constraint from the derivative matching and the momentum in one ring can

be different from the one in the other ring in principle. As a consequence the lightest

mode start to appear at 1/(
√

Nρ) although the actual configuration is not a homogeneous

variation along 2πρ but a rapid variation only at a local region. This is in accord with the

deconstruction result of two centered Octopus.

We stress here that it is the presence of a junction from which all the subsegments

or rings are connected and they make it possible to raise the scale of the Kaluza-Klein

excitations.

4. Conclusion

In this paper we have shown that the spectrum of Kaluza-Klein particles can be rich and

interesting even with a single extra dimension. Depending on how the extra dimension

is connected with each other, the KK spectrum appears entirely differently. The most

interesting aspect is that we can defer the appearance of the lightest KK modes as high

as we want. This is impossible with a simple circle compactification or an orbifolding of

it. With a single extra dimension the lightest KK mode is directly linked to the size of

the extra dimension (1/R) if the extra dimension is a simple circle or an interval. Several

examples considered in this paper shows that the relation no longer holds if several extra

dimension is connected with a common point, so called ’junction’ or ’center’. This enables

us to have TeV scale quantum gravity with a single extra dimension and a lightest KK

mass of 100 MeV.

The fact that this new setup is just 5 dimensional spacetime is important. This opens

an entirely new era for figuring out what would be the shape of the extra dimension relevant

to the real world. Before going to higher dimensional theory, we can study a lot of examples

with a single extra dimension. Orbifold GUT in 6D [25 – 29] has more freedom over 5D

model since we can use two orbifolding parity and two Wilson lines. However, now with

the setup considered here, we can do the similar thing in 5D by attaching two or three

intervals. Model building should be seriously done with these new setups. It would be

possible to build a simple model in 5D. The configuration might be regarded as ad hoc.

However, it can be understood as an effective description of the underlying theory and

most of important physics questions can be addressed without relying on what the exact

underlying theory is.

Although we studied the single extra dimension only, the ’center’ or the ’junction’

can play the same role when two or more spatial extra dimensions are attached. Also the

’center’ or the ’junction’ can be generalized to arbitrary higher dimensions. Furthermore,

we have not introduced any local kinetic terms or mass terms here but we can study the

general cases in which the ’center’ has a special interactions. Boundary conditions at

the leg also can be generalized. We leave many detailed example studies for the future
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work. Phenomenological constraints on the extra dimension also should be restated after

considering several variations of the simple compactification.
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